
Automatically Generating High Automatically Generating High

Performance Source Code for a Performance Source Code for a

ManyMany--Core CPU orCore CPU or

Accelerator from a Simplified Accelerator from a Simplified

Input Code ExpressionInput Code Expression

Jagan Jayaraj, Pei-Hung Lin, Paul R. Woodward,

and Pen-Chung Yew

Laboratory for Computational Science & Engineering

University of Minnesota

Jan. 27, 2011

The Problem: The Problem:

SingleSingle--Chip & SingleChip & Single--Node PerformanceNode Performance

Overall system performance begins at a node.

• Scalability is not enough. 1000 x 0.01 = 10.

• Getting to exascale will be immensely easier if we can

bump up the typical single core performance from

1% – 5% of peak to 25 – 50% of peak.

We must overcome:

• Small ratio off-chip memory bandwidth / peak flops

• Need for strong scaling, doing less per time step on

each core while still running at 25 – 50% of peak.

Our Approach for Achieving High Our Approach for Achieving High

SingleSingle--Chip & SingleChip & Single--Node PerformanceNode Performance

Small ratio off-chip memory bandwidth / peak flops:

• The only way to address this in general is with a

sufficiently large on-chip cache.

• Making optimal use of this resource requires, in our

experience, extreme code restructuring.

• This requires assistance of a precompilation tool.

Need for strong scaling, doing less per time step on each

core while still running at 25 – 50% of peak:

• Must make full use of vector SIMD units.

• Vectors must be short (cache is small), hence aligned.

• Multiple cores on single chip must cooperatively

update a single subdomain to minimize messaging.

Quantifying the TradeQuantifying the Trade--off between Memory off between Memory

Bandwidth and OnBandwidth and On--Chip Cache CapacityChip Cache Capacity

Example of our present multifluid PPM code.

(Ignore cost of reading the instructions.)

1) One entire time step update on chip:

3900/120 flops/byte = 130 flops/word (9 MB)

2) Single 1-D pass update on chip:

1300/120 flops/byte = 43.3 flops/word (256 KB)

3) PPMinterp for single variable on chip:

34/32 flops/byte = 4.25 flops/word (64 KB)

4) RiemannStates on chip:

79/140 flops/byte = 2.26 flops/word (64 KB)

5) Fluxes on chip:

162/208 flops/byte = 3.12 flops/word (64 KB)

A modest cache buys a factor of 10 in mem. Bandwidth!!

How does the code look?How does the code look?

What did the translator doWhat did the translator do
Inlining

� Necessary for pipelining

Pipelining

� Controls the explosion of temporaries

Temporary array space reduction

� Fit the whole computation into the L-1/L-2 cache

Prefetching

� Overlap computation w/ communication to a

node’s own main memory

Fusing (Fusing IFs, not loops)

� Move pipelined code blocks to reduce branching

Unrolling

� Reduce branching.

Relies on directives and annotations

Fully Pipelined Processing of Grid BriquettesFully Pipelined Processing of Grid Briquettes

Each uninterruptible unit of work for a CPU core is:

1000 continue

� Prefetch the next group of 16 grid briquettes.

� Unpack the previously fetched group of briquettes.

� Construct 32-word vectors from briquette records.

� Perform 32××××1447 vector SIMD flops, with all

vector operands aligned.

� Result is set of 4 updated grid briquettes.

� Pack new result vectors back into 4 grid briquette

records, possibly transposing the contents.

� Write the 4 updated grid briquette records back to

main memory.

� If more briquettes in strip, then go to 1000.

Return to begin next strip of briquettes.

Benefits of Pipelined Operation:Benefits of Pipelined Operation:

• All accesses to main memory are in “atomic” units of

grid briquette records, which are each 480 bytes.

• 16 briquette records trickle into cache while we

update previous 4 briquettes in the sequence.

• All operands are 4 quadwords and all are aligned.

• Derivatives are evaluated in direction of the 1-D pass,

which enables operand alignment to be preserved.

• Small number of transverse derivatives evaluated

using specially constructed, aligned operands.

• Only the minimum amount of data required to

update 4 grid briquettes resides in cache.

• Huge amount of on-chip data reuse,

4.82 flops/byte/core or 19.3 flops/word/core.

• Uses less than 10% of available memory bandwidth.

Summary / The tool on completion does :Summary / The tool on completion does :

Inline all subroutines a single briquette update needs

Pipeline over briquettes to avoid redundant unpacking

of data records and redundant computation

Fuse code blocks belonging to same pipeline stages

Unroll outer loops over longitudinal dimension (strip

direction)

Prefetch

Perform liveness analysis and further reindex temporaries

Retain minimal set of transverse grid planes needed

for a single briquette update

Optionally unroll inner loops over transverse direction to

produce sequence of quadword SIMD operation

We will NOT handle everything for all codes.
Programmers will have to annotate their codes, or at least the

sections to be translated.

Programmers will be responsible for the correctness of the

directives they use. Incorrect usage is a program bug, not the

translator’s.

Programmers will control decomposition of the algorithm into a

sequence of calculations each of which will be pipelined.

Translator will assume that all devices have roughly the same ratio

of memory bandwidth to peak performance (which is true

today).

If entire algorithm is pipelined into a single loop, may need to spill

too many “vector registers” and read them back later.

If algorithm broken up into too many separate pipelined loops,

on-chip data reuse reduced.

Programmer experiments, using code translator.

Restrictions:Restrictions:

Simplifies analysis and tool building

Examples:

• Simplify parsing

• Integer lengths in type statements must be just

constants => real*8 allowed, but not real*(8) or

real*(4+4)

• Simplify analysis

• Unnamed common blocks not supported

• Common block statements must appear all its

members have been declared

• Loops bounds must be constants in the

transformation region

• Scalar statements not allowed between the pipeline

stages

Doesn’t impair programmability

1)

2)

Input:

A program updating a sequence of grid briquettes

The translator pipelines it

OpenMP, or any
equivalent
threading model,
is used to have
multiple CPU
cores
cooperatively
update a single
grid brick.

Each core
updates strips of
grid briquettes
(sugar cubes).

There is now a barrier synchronization among the core
threads at the end of each grid brick update.

8 cores (different colors) simultaneously

update 8 strips of sugar cubes.

3)

8 cores simultaneously update each of

the 8 bricks in succession.

4)

At the beginning
of each grid brick
update, we
receive 1
message in each
of the 3 grid
directions.
At the end of
each grid brick
update, we send
1 message in
each of the 3
grid directions.

This messaging strategy allows all the worker threads to just
keep right on working without ever stopping.

c Output arrays from Fluxes:

c

dimension dvoll(nssq,1-nghostcells:nx+nghostcells)

dimension dmassl(nssq,1-nghostcells:nx+nghostcells)

c

c Output arrays from CellUpdate:

c

dimension rhonu(nssq,1-nghostcells:nx+nghostcells)

c

c Scratch arrays:

c

dimension thing01(nssq,1-nghostcells:nx+nghostcells)

dimension thing02(nssq,1-nghostcells:nx+nghostcells)

dimension thing03(nssq,1-nghostcells:nx+nghostcells)

c

c Scratch arraylets:

c

dimension thngy01(nssq), thngy02(nssq), thngy03(nssq)

dimension thngy04(nssq), thngy05(nssq), thngy06(nssq)

Inside the principal routine, scratch storage on the stack

is laid out as above in the Fortran-W version. This
version is intended to be easy to write and maintain.

cPPM$ ELIMINATE REDUNDANT ITERATIONS

do icget = icube-nghostcubes,icube+nghostcubes

c

c write (6,*) 'icget =',icget

cPPM$ PREFETCH BEGIN

cPPM$ DOUBLEBUFFER D

mycube = 1 + (icget-1)*incx - incy - incz

do kcube = 1,nsugarcubes

mycube = mycube + incz

micube = mycube

do jcube = 1,nsugarcubes

micube = micube + incy

do j = 1,nsugarcubed

d(j,jcube,kcube) = dd(j,micube)

enddo

enddo

enddo

c

do i = 1,nsugar*2

xlcube(i) = xxl(i,icget)

enddo

cPPM$ PREFETCH END

In this principal

Fortran-W routine,

we do a loop on

icube, and on each

iteration we fetch a

briquette record

and the necessary

ghost briquettes

needed to enable

the updating of the

variables in this

grid briquette. This

data is unpacked

and rearranged

once we have it in

the on-chip cache

memory.

call ppmintrf0vec (rho,

& unsmth,

& rhol,rhor,drho,rho6,

& dal,absdal,dasppm,damnot,alsmth,alunsm,

& thngy01,thngy02,thngy03,thngy04,thngy05,thngy06,

& sixth,crterr,ferrfc,small,

& adds,amults,recips,cvmgms,sqrts,rsqrts,exps,

& ifdebug,time,myrank,mythread,mbrick,

& iold,icube,jbq,kbq,ipass,

& MyBrickX,MyBrickY,MyBrickZ,

& NXBricks,NYBricks,NZBricks)

Once we have unpacked the grid briquette

records and rearranged their contents in cache-

resident arrays on the stack, we call a routine that

takes this data and operates upon it using a very

simple Fortran expression, which is the

advantage of Fortran-W. We pass a temporary

workspace on the stack to this routine in the form

of the arrays thngy0x.

subroutine ppmintrf0vec (a,

& unsmth,

& al,ar,da,a6,

& dal,absdal,dasppm,damnot,alsmth,alunsm,

& thngy1,thngy2,s,almon,armon,unsmooth,

& sixth,crterr,ferrfc,small,

& adds,amults,recips,cvmgms,sqrts,rsqrts,exps,

& ifdebug,time,myrank,mythread,mbrick,

& iold,icube,jbq,kbq,ipass,

& MyBrickX,MyBrickY,MyBrickZ,

& NXBricks,NYBricks,NZBricks)

From the perspective of the routine ppmintrf0vec,

written in Fortran-W, our single grid briquette,

with its ghost cells, constitutes the entire grid of

the problem. We exploit the fact that in a parallel

code, the updating of a subset of the problem

domain follows the same algorithm and code

expression as the update of the entire domain.

This is a sort of self-similarity.

parameter (nsugar=nnsugar)

parameter (nsugarcubes=nnsugarcubes)

parameter (nbdy=nnbdy)

parameter (nbdy1=nbdy+nsugar-1)

parameter (nghostcubes=(nbdy1/nsugar))

parameter (nghostcells=nghostcubes*nsugar)

parameter (n=nsugar)

parameter (nx=nsugar)

parameter (ny=nsugar)

parameter (nz=nsugar)

parameter (nyy=ny*nsugarcubes)

parameter (nzz=nz*nsugarcubes)

parameter (nssq=nyy*nzz)

The permitted formats make use of parameter statements
like these. The programmer can choose whatever parameter
names are desired, and set them, as in this example, using
the C preprocessor, but they must evaluate to integer
constants. When handed to the PPM code translator, the
grid briquettes must be cubes, here called sugar cubes.

Here nsugar, the
number of grid cells on
each side of each grid
briquette, has the value
4.
nbdy is the number of
ghost cells required on
each end of a 1-D grid
strip for a 1-D pass of
this algorithm. In this
case it is also 4, which
is especially felicitous.

cPPM$ LOWERBOUND 1-nbdy

cPPM$ UPPERBOUND nx+nbdy

cPPM$ LONGITUDINAL LOOP

do 7000 i = 4-nbdy,n+nbdy-3

!DEC$ VECTOR ALWAYS

c!DEC$ VECTOR ALIGNED

do jk = 1,nssq

al(jk,i) = alunsm(jk,i)

ar(jk,i) = alunsm(jk,i+1)

almon(jk) = 3. * a(jk,i) - 2. * ar(jk,i)

armon(jk) = 3. * a(jk,i) - 2. * al(jk,i)

if (((a(jk,i) - al(jk,i)) * (a(jk,i) - ar(jk,i))) .ge. 0.) then

al(jk,i) = a(jk,i)

ar(jk,i) = a(jk,i)

almon(jk) = a(jk,i)

armon(jk) = a(jk,i)

endif

if (((ar(jk,i) - al(jk,i)) * (almon(jk) - al(jk,i))) .gt. 0.)

& al(jk,i) = almon(jk)

if (((ar(jk,i) - al(jk,i)) * (armon(jk) - ar(jk,i))) .lt. 0.)

& ar(jk,i) = armon(jk)

da(jk,i) = ar(jk,i) - al(jk,i)

a6(jk,i) = 6. * (a(jk,i) - .5 * (al(jk,i) + ar(jk,i)))

enddo

7000 continue

The programmer
communicates to

the translator how
this loop is to be

inserted into a fully

pipelined

translation by

means of the

extents on the

outer loop over i.
The outer loop

must run over the

dimension
considered as X

in this routine –

the direction of

this 1-D pass.

!DEC$ VECTOR ALWAYS

c!DEC$ VECTOR ALIGNED

do jk = 1,nssq

rhol(jk,i16m03) = alunsm(jk,i16m03)

rhor(jk,i16m03) = alunsm(jk,i16m02)

almon(jk) = 3. * rho(jk,i16m03) - 2. * rhor(jk,i16m03)

armon(jk) = 3. * rho(jk,i16m03) - 2. * rhol(jk,i16m03)

if (((rho(jk,i16m03) - rhol(jk,i16m03))

& * (rho(jk,i16m03) - rhor(jk,i16m03))) .ge. 0.) then

rhol(jk,i16m03) = rho(jk,i16m03)

rhor(jk,i16m03) = rho(jk,i16m03)

almon(jk) = rho(jk,i16m03)

armon(jk) = rho(jk,i16m03)

endif

if (((rhor(jk,i16m03) - rhol(jk,i16m03))

& * (almon(jk) - rhol(jk,i16m03))) .gt. 0.)

& rhol(jk,i16m03) = almon(jk)

if (((rhor(jk,i16m03) - rhol(jk,i16m03))

& * (armon(jk) - rhor(jk,i16m03))) .lt. 0.)

& rhor(jk,i16m03) = armon(jk)

drho(jk,i16m03) = rhor(jk,i16m03) - rhol(jk,i16m03)

rho6(jk,i16m03) = 6. * (rho(jk,i16m03)

& - .5 * (rhol(jk,i16m03) + rhor(jk,i16m03)))

The Fortran-I
intermediate form
translation of the
Fortran-W loop is
unrolled 4 times
and placed in a
pipelined position
in a single routine
into which all
subroutines have
been inlined. The
outer array indices
are barrel shifted
on each trip
through the
pipeline, so that
precious space in
the on-chip memory
is optimally utilized.

!DEC$ VECTOR ALWAYS

c!DEC$ VECTOR ALIGNED

do jk = 1,nssq

rhol(jk,i16m03) = alunsm(jk,i16m03)

rhor(jk,i16m03) = alunsm(jk,i16m02)

almon(jk) = 3. * rho(jk,i16m03) - 2. * rhor(jk,i16m03)

armon(jk) = 3. * rho(jk,i16m03) - 2. * rhol(jk,i16m03)

if (((rho(jk,i16m03) - rhol(jk,i16m03))

& * (rho(jk,i16m03) - rhor(jk,i16m03))) .ge. 0.) then

rhol(jk,i16m03) = rho(jk,i16m03)

rhor(jk,i16m03) = rho(jk,i16m03)

almon(jk) = rho(jk,i16m03)

armon(jk) = rho(jk,i16m03)

endif

if (((rhor(jk,i16m03) - rhol(jk,i16m03))

& * (almon(jk) - rhol(jk,i16m03))) .gt. 0.)

& rhol(jk,i16m03) = almon(jk)

if (((rhor(jk,i16m03) - rhol(jk,i16m03))

& * (armon(jk) - rhor(jk,i16m03))) .lt. 0.)

& rhor(jk,i16m03) = armon(jk)

drho(jk,i16m03) = rhor(jk,i16m03) - rhol(jk,i16m03)

rho6(jk,i16m03) = 6. * (rho(jk,i16m03)

& - .5 * (rhol(jk,i16m03) + rhor(jk,i16m03)))

In the Fortran-I
expression, each
line of code is a 16-
wide SIMD
operation. When
fully transformed,
the outer indices are
compressed to the
minimum size of
circular buffer of 16-
element grid planes
needed for each
variable residing on
chip. The loops on
the index jk also all
go away to give a
simple, but
enormous stream of
SIMD instructions.

ImplementationImplementation
� Built using ANTLR parser generator

• Currently, supports FORTRAN77 input

• Parser generates AST

• Transformations implemented in multiple passes

• Each pass modifies AST

• Symbol tables aid the process

� and StringTemplate template engine

• Generates high performance FORTRAN output

We have a whole another back-end tool chain to generate

architecture specific ports.

• C with (SIMD) intrinsics for different architectures.

• Current ports include Cell, Altivec (Power7), SSE

ResultsResults
Reciprocals counted as 3 flops

Multifluid PPM

• Nehalem cluster

� 5.5 Gflop/s/core (23% of 32-bit peak)

• Cell (pure 32-bit)

� 4.5 Gflop/s/SPU on 1 Cell processor

� 3.4 Gflop/s/SPU on 1440 Cell processors

• Cell (Mixed 32-bit and 64-bit)

� 2.04 Gflop/s/SPU on 24 Cell processors in our lab's

RR tri-blades

� 1.37 Gflop/s/SPU on 7168 Cell processors

PPM advection

� 5.64 Gflop/s/core on our Nehalem cluster

� 6.28 Gflop/s/core self-reported

� Working with Intel folks to boost it up to 50% of 32-bit

peak

Future WorkFuture Work

Weather code

• Bob Wilhelmson’s tornado simulation team for IBM

Blue Waters

• Not directionally split

• 3D cell update at every pass

Explore applicability to multi-physics AMR

• Try briquette-by-briquette approach instead of cell-

by-cell AMR

• We then get the benefits of

• Efficient read, writes

• Aligned short vector operations

ConclusionsConclusions
Pipelining enables high computational intensity and

execution speed (23% of 32-bit peak on Nehalem).

Granularity is dramatically reduced, because there is now

very much more work in each episode in order to

make it efficient. Allows efficient scaling to over a

million cores.

Code is readable, but you would never agree to write it this

way, and even if you did, you could not maintain it in

this form with a reasonable level of effort

Need automatic code translators to convert simple

expression to high performance expression and

platform specific code expression (C with SIMD

intrinsics, CUDA)

Tools come with reasonable restrictions to insure

reasonable tool development efforts.

AcknowledgementsAcknowledgements

NSF grant CNS-0708822

DOE, LANL

ReferencesReferences
1) P.R. Woodward, J. Jayaraj, P.-H. Lin, G.M. Rockefeller, C.L.

Fryer, Guy Dimonte, W. Dai, R.J. Kares, “Simulating

Rayleigh-Taylor (RT) instability using PPM hydrodynamics @

Scale on Roadrunner,” Proceedings NECDC 2010 conference,

Los Alamos National Laboratory, Oct. 2010. Preprint

available at www.lcse.umn.edu/NECDC2010

2) Woodward, P.R., J. Jayaraj, P.-H. Lin, and P.-C. Yew, “Moving

Scientific Codes to Multicore Microprocessor CPUs,”

Computing in Science & Engineering, special issue on novel

architectures, Nov. 2008, p. 16-25. Preprint available at

www.lcse.umn.edu/CiSEwww.lcse.umn.edu/CiSE..

3) Woodward, P.R., J. Jayaraj, P.-H. Lin, and W. Dai, “First

Experience of Compressible Gas Dynamics Simulation on the

Los Alamos Roadrunner Machine,” Concurrency and

Computation: Practice and Experience, June 2009, vol. 21, p.

2160-2175.

